Triangle Algebras: Towards an Axiomatization of Interval-Valued Residuated Lattices

نویسندگان

  • Bart Van Gasse
  • Chris Cornelis
  • Glad Deschrijver
  • Etienne E. Kerre
چکیده

In this paper, we present triangle algebras: residuated lattices equipped with two modal, or approximation, operators and with a third angular point u, different from 0 (false) and 1 (true), intuitively denoting ignorance about a formula’s truth value. We prove that these constructs, which bear a close relationship to several other algebraic structures including rough approximation spaces, provide an equational representation of interval-valued residuated lattices, which are triangularizations of residuated lattices; as an important case in point, we consider L , the lattice of closed intervals of [0, 1]. As we will argue, the representation by triangle algebras serves as a crucial stepping stone to the construction of formal interval-valued fuzzy logics, and in particular to the axiomatic formalization of residuated t-norm based logics on L , in a similar way as was done for formal fuzzy logics on the unit interval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filters of residuated lattices and triangle algebras

An important concept in the theory of residuated lattices and other algebraic structures used for formal fuzzy logic, is that of a filter. Filters can be used, amongst others, to define congruence relations. Specific kinds of filters include Boolean filters and prime filters. In this paper, we define several different filters of residuated lattices and triangle algebras and examine their mutual...

متن کامل

Triangle algebras: A formal logic approach to interval-valued residuated lattices

In this paper, we introduce triangle algebras: a variety of residuated lattices equipped with approximation operators, and with a third angular point u, different from 0 and 1. We show that these algebras serve as an equational representation of intervalvalued residuated lattices (IVRLs). Furthermore, we present Triangle Logic (TL), a system of many-valued logic capturing the tautologies of IVR...

متن کامل

The pseudo-linear semantics of interval-valued fuzzy logics

Triangle algebras are equationally defined structures that are equivalent with certain residuated lattices on a set of intervals, which are called interval-valued residuated lattices (IVRLs). Triangle algebras have been used to construct Triangle Logic (TL), a formal fuzzy logic that is sound and complete w.r.t. the class of IVRLs. In this paper, we prove that the so-called pseudo-prelinear tri...

متن کامل

A characterization of interval-valued residuated lattices

As is well-known, residuated lattices (RLs) on the unit interval correspond to leftcontinuous t-norms. Thus far, a similar characterization has not been found for RLs on the set of intervals of [0,1], or more generally, of a bounded lattice L. In this paper, we show that the open problem can be solved if it is restricted, making only a few simple and intuitive assumptions, to the class of inter...

متن کامل

AN INVESTIGATION ON THE CO-ANNIHILATORS IN TRIANGLE ALGEBRAS

In this paper, we introduce the notion of co-annihilator of a subsetin a triangle algebra. It is shown that the co-annihilator of asubset is an interval valued residuated lattice (IVRL)-filter. Also, aspecial set of a triangle algebra is defined and the relationshipbetween this set and co-annihilator of a subset in triangle algebrais considered. Finally, co-annihilators preserving congruencerel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006